Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia

نویسندگان

  • F Esra Demircioglu
  • Brian A Sosa
  • Jessica Ingram
  • Hidde L Ploegh
  • Thomas U Schwartz
چکیده

The most common cause of early onset primary dystonia, a neuromuscular disease, is a glutamate deletion (ΔE) at position 302/303 of TorsinA, a AAA+ ATPase that resides in the endoplasmic reticulum. While the function of TorsinA remains elusive, the ΔE mutation is known to diminish binding of two TorsinA ATPase activators: lamina-associated protein 1 (LAP1) and its paralog, luminal domain like LAP1 (LULL1). Using a nanobody as a crystallization chaperone, we obtained a 1.4 Å crystal structure of human TorsinA in complex with LULL1. This nanobody likewise stabilized the weakened TorsinAΔE-LULL1 interaction, which enabled us to solve its structure at 1.4 Å also. A comparison of these structures shows, in atomic detail, the subtle differences in activator interactions that separate the healthy from the diseased state. This information may provide a structural platform for drug development, as a small molecule that rescues TorsinAΔE could serve as a cure for primary dystonia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia.

Torsion dystonia-1 (DYT1) dystonia, the most common inherited form of dystonia, is caused by a three base pair deletion that eliminates a single amino acid from the disease protein, torsinA. TorsinA is an "AAA" protein thought to reside in the endoplasmic reticulum (ER), yet both its cellular function and the basis for neuronal dysfunction in DYT1 remain unknown. A clue to disease pathogenesis ...

متن کامل

Silencing primary dystonia: lentiviral-mediated RNA interference therapy for DYT1 dystonia.

DYT1 is the most common inherited dystonia. Currently, there are no preventive or curative therapies for this dominantly inherited disease. DYT1 dystonia is caused by a common three-nucleotide deletion in the TOR1A gene that eliminates a glutamic acid residue from the protein torsinA. Recent studies suggest that torsinA carrying the disease-linked mutation, torsinA(DeltaE) acts through a domina...

متن کامل

Dystonia-associated mutations cause premature degradation of torsinA protein and cell-type-specific mislocalization to the nuclear envelope.

An in-frame 3 bp deletion in the torsinA gene resulting in the loss of a glutamate residue at position 302 or 303 (torsinA DeltaE) is the major cause for early-onset torsion dystonia (DYT1). In addition, an 18 bp deletion in the torsinA gene resulting in the loss of residues 323-328 (torsinA Delta323-8) has also been associated with dystonia. Here we report that torsinA DeltaE and torsinA Delta...

متن کامل

A novel conditional knock-in approach defines molecular and circuit effects of the DYT1 dystonia mutation.

DYT1 dystonia, the most common inherited form of primary dystonia, is a neurodevelopmental disease caused by a dominant mutation in TOR1A. This mutation ('ΔE') removes a single glutamic acid from the encoded protein, torsinA. The effects of this mutation, at the molecular and circuit levels, and the reasons for its neurodevelopmental onset, remain incompletely understood. To uniquely address ke...

متن کامل

Regulation of Torsin ATPases by LAP1 and LULL1.

TorsinA is a membrane-associated AAA+ (ATPases associated with a variety of cellular activities) ATPase implicated in primary dystonia, an autosomal-dominant movement disorder. We reconstituted TorsinA and its cofactors in vitro and show that TorsinA does not display ATPase activity in isolation; ATP hydrolysis is induced upon association with LAP1 and LULL1, type II transmembrane proteins resi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016